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Abstract
A Finite Element Method (FEM) is presented to determine propagation

characteristics of deformed inflatable rectangular waveguide. Various deformations that

might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure

and the code developed here is so general that it can be used for any other deformations that

are not considered in this report. The code is validated by applying the present code to

rectangular waveguide without any deformations and comparing the numerical results with

earlier published results. The effect of the deformation in an inflatable waveguide on the

radiation pattern of linear rectangular slot array is also studied.

1.0 Introduction
Recently there has been considerable interest in the development of inflatable antenna

structures [1-3] for space applications. In inflatable antenna technology, the antenna structure is

packaged in a small volume during its launch phase and inflated or stretched to its full length after

reaching desired orbit. One such structure under development at NASA Langley Research Center

is an inflatable slotted rectangular waveguide antenna to be used in soil moisture measuring

radiometer. After full deployment of such structure in space, the waveguide surface may have

wrinkles, curved walls depending upon the pressure used to inflate the structure, and other

unaccounted forces acting on the structure. For successful operation of these antennas, it is

desirable to study and estimate adverse effects of these deformations in waveguide walls on the

antenna performance. Since these deformations cannot be completely eliminated, study of their

effects on antenna performance may lead to determine an allowable level of deformations in these

structures reducing high constraint on mechanical design.

An antenna array performance is usually specified by its radiation pattern, input impedance,

polarization, etc. For a linear slot array antenna consisting of the shunt slot elements on the



broadwall of arectangularwaveguide,themainbeamdirectionis givenby [4]

cos(_)) = n + -_g + nn )_o/ (2rid) where d is the physical spacing between the elements,

)_g and )_o are the guide and free space wavelengths, and n = 0, +2, +4 .... Usually for the broad

side radiation at a given frequency of operation the distance d is selected as )_gO/2, where )_gO is

the guide wave length of undistorted waveguide. For n = -2, the expression for beam direction

/becomes cos (_)) = ( )_g - 1 )_o/)_gO = - 1 _5o/k o where [_o and [_ are the dominant

mode propagation constants of undistorted and distorted rectangular waveguides, respectively,

and k o is the free space wave number. From these above expressions it is clear that if [_ = [_o

then main beam is in the broad side direction. However for [_, different from [_o, the main beam

shift from the broad side direction as shown in Figure 1. In order to relate various antenna

deformations to shift in mean beam direction, it is important to estimate the effects of various

deformation in waveguides on the propagation constant [_.

In the design of shunt slot array antennas, one of the most important expression designers

use is the resonant slot conductance [5] Go = 2.09( k° a ] m (rc_°_l]2 (_ob) LCOS_ ggo_o _). By selecting

proper slot displacement, an amplitude distribution for required radiation pattern is achieved.

However for [_, different from [_o, which is the case for deformed waveguide, the resonant slot

conductance will change and hence the amplitude distribution. Quantitatively the dependance of

G O on the propagation constant is shown in Figure 2. It is therefore essential to know the

propagation constant variation due to deformation in inflatable waveguides.



Thepurposeof this reportis to present ananalytical methodto determinethe

electromagneticfieldsandpropagationconstantin arectangularwaveguidewith deformedcross

sections.A few examplesof deformedcrosssectionsthat maybepresentin aninflatable

waveguideareshownin Figure3. Theanalysisof waveguidewith canonicalshapessuchas

rectangularor elliptical ( includingthecircularasa specialcase) crosssection is usuallycarried

outby solvingthe scalarHelmholtzequationsubjectedto Dirichlet andNeumannconditions.

Theelectromagneticfield in thesecrosssectionscanbewrittenin termsof sine,cosine,or Bessel

functionsbecauseof the separabilityof variables[6,7].However,for theirregularshapesshown

in Figure1,the simpleseparationof variablesmethodgivenin [6,7]becomesmoretediousand

hencenot preferred. In thisreportaversatileandpowerfulnumericaltechnique,namelythe

FiniteElementMethod,is usedto analyzethesedistortedstructures.

Theproblemof findingeigenvaluesandpropagationconstantof awaveguideof an

arbitrarily shapedcrosssectioncanbesolvedby invokingtheweakform of vectorwaveequation

[8,9]. By dividing thewaveguidecrosssectioninto triangularsubdomainsandexpressingthe

electricfield (for E-field formulation)or themagneticfield (for H-field formulation)into

appropriatevectorbasisfunction [9], theweakform of vectorwaveequationis reducedto a

matrixequation.Theresultingmatrix equationis thensolvedfor eigenvaluesandpropagation

constantusingstandardmathematicalsubroutines.Theremainderof thereportis organizedas

follows. Theformulationof theproblemin termsof weakform of vectorwaveequationandits

reductionto amatrixequationisdevelopedin section2. Thedetailstepsinvolvedin casting the

matrixequationintoaneigenvalueproblemis alsogivenin section2. Thequantitativeestimates

of effectsof waveguidecrosssectiondeformationonpropagationconstantof aL-band

rectangularwaveguidearegivenin section3. Theeffectof wall distortionon radiationpattern



of linearslotarrayson distortedrectangularwalls is alsonumericallystudiedin section3. The

reportis concludedin section4 with recommendationsbasedon thenumericalresultspresented

in section3 andfuturework to becompleted.

2.0 Theory
2.1 Finite Element E-Field Formulation :

The waveguide cross sections to be analyzed are shown in Figure 3. To determine

effects of these irregularities on the cut-off frequency, propagation constant, and characteristic

impedance, the numerical technique such as Finite Element Method is developed in this section.

The electric field in the cross sections shown in Figure 4 satisfies the Maxwell's equations:

(1)

(2)

Substituting (1) in (2), the

--> ->

VxH = jo3eE

where g and e are the permeability and permittivity of the medium.

vector wave equation with electric field is obtained as

--> 2 -->

_r

Similar vector wave equation for the magnetic field can be obtained by substituting (2) in (1).

However, we will restrict here to the E-field vector wave equation. Assuming the waveguide to

be infinite in the z-direction, the electric field can be written as

E = E t + _E z (4)

....)

where E t = 2E x + _Ey, 2, Y, _ being the unit vectors along the x-, y-, and z-directions respec-

tively and [3 is the propagation constant in the z-direction. In the equation (4) it is assumed that

the wave is traveling from z = -_ to z = + _. Substituting (4) into (3) and carrying out sim-

ple mathematical operations, the following equation is obtained:

10



[Jr VxLte )--KoErLte

+ vxl(Vx_Eze4_Z)-k_er2Eze4_Z=O (5)
_-[F \

Substituting the gradient operator in equation (5) as V = V _- 2 (j[}) and performing simple

mathematical manipulation, equation (5) can be written as

The equation (6) can be written in component form as

= 0 (6)

Vrr_. VrrE , j_VtEz-[3 ,)-koe r ,= 0 (7)

In order to make coefficients of field components real, equations (7) and (8) after the substitution

E = j_E are written as

The expressions

v_, v_e, +7, v,E+ ,)-ko_, ,= o (9)

• + koerE 0 (10)_, v, v,e+ =
(9) and (10) are required equations to be solved either for the propagation con-

stant [_ for a given frequency or for the cut-off wave number k c = k o for [_ = 0. In either case

to solve equations (9) and (10) using the Galerkin's procedure, we select a testing function

--) --)
T = Tt+_T.

Z

.-)

Multiply equations (9) and (10) with T: and T, respectively, and integrating over

the cross section we get

11



I Vdc VpcE t + VtE Z + E l -koerEt • Ttdxdy = 0
cross section

S S(_,,-, +
cross section

Using the vector identities

+ > > > (._xa)A • VtxB = VtxAt • B- V t •
2

(11)

(12)

--) --> --)

fV t •A = +V t •fA -A•Vf

I I Vt•A dxdy = •hdl
cross section F

where h is the outward drawn unit normal vector to the curve F enclosing the cross section.

equations (11) and (12) can be written as

s/ //f vA, ±v_L _ >• - koe ,.- _t •Tt dxdy
_-L I.

cross section

and

I • Ttdxdy = - t • h × --V/cEtdFVtEz
+ btr

cross section F
(13)

_ _<_,Er d*dS J'v,r-1->S S(v,_.-v,. ) + S _,.,<,x<,y
cross section cross section

1 -)

= [1TVtE•hclr+ [--LEt.hdF (14)
_t,. r_t,.

where h is the outward drawn unit normal vector to the curve 17 enclosing the cross section. To

solve the weak forms of differential equations given in (13) and (14) numerically, the cross

section shown in Figure 4(a) is discretized into triangular domain as shown in figure 4(b). The

12



transverse and longitudinal components over a triangle (shown in 5) are then expressed as

3
--) --)

E, = _ e. W,.,(x,y) (15)

m 1

3

E = _ gzo_n(x,y) (16)

n 1

where m =1,2,3 are the three edges of the triangle and n = 1,2,3 are the three nodes of the triangle.

--+

The detail derivation of the vector edge basis function W.. and the scalar basis function

o_n (x, y) are given in Appendix A. Substituting (15) and (16) in (13) and (14) we get

_ et. ' VpcWt. . VpcWt. koe , Wt. • Wt. dxdy
m 1 triangle _r

+  2(3
n 1 triangle

)

Vto_n • W.. dxdy + 3 --)

_ e.. I I _"''W'''dxdy

m 1 triangle

3

E etm l

m 1 triangle

= - t " h × --VflcEtdF
r _t

3

" W..dxdy +, I • koe ,.(o_o_,) dxdy
n 1 triangle _r

(17)

3 3

I 1 11= + _ gzn r_°_nVt°_n" hdF + _ e,. uO_nW,., hdF (18)
n 1 " m 1 F _ r

For the waveguide cross section enclosed by metallic boundaries, the line integrals appearing on

right hand sides of equations (17) and (18) are always zero. This is true because of the tangential

electric field being zero on the perfectly conducting boundaries. With these considerations, the

equations (17) and (18) can be written in a matrix form

Igel(m"m) _1 [etrrt = -_2IRel(m:'m) Qel(m"n)] Ietrrt
o L&d P,(n',n)JL&d

suitable for calculations of propagation constant for a given frequency.

(19)
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For calculation of cut-off wave number when [_ = 0 the equation (17) and (18) can be written in

a matrix form

Vel(n',n) Lg_d 0

suitable for calculation of cut-off wave number.

in equations (19) and (20) are given by

Yd(n', n) lg_d

The elements of various submatrices appearing

Qd (m', n) (23)

s s( -> ' --> -> ->;)S d (m', m) = V#Wtt.' • --V#Wtm - koe r Wtm • Wtm' dxdy (21)
triangle _tr

Rd(m,m) = 1 f (22)' • Wt,,'dxdy

_rtriangle"

:-1 .f fv,o_,,._,,,,<_,<dy
_tr triangle"

"_,_,,,,,).r .r(v,o,,,_,v,o,,,_ )' = • - koe ,. (o_no_n,) dxdy (24)
triangle _tr

U d (m', m) (25)= VdcW..' • VrxW.. dxdy
triangle -_r

: .r .r(v,o<,<.-'v,o<,_<,<<,y
triangle _tr J

V d (n', n) (26)

rrt -> _)X d (m', m) = e Wt,. • Wf,.' dxdy
triangle

c,(,',',,',): I I_,o<,,o<,,<'<<'y
triangle

The double integrations over the triangle

(27)

appearing in (21)-(28)

Details of the numerical integration are given in Appendix B.

3.0 Numerical Results

A FORTRAN code is written to solve the eigenvalue problems described in equations (19)

and (20). The matrix elements appearing in (19) and (20) are evaluated numerically (see

Appendix B ). To validate the code, the cutoff wave numbers for various modes in a rectangular

waveguide without wall distortion are first determined and compared with analytical results [7].

(28)

are numerically evaluated.
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3.1 Rectangular Waveguide Without Wall Distortion:

The eigenvalues are then determined using standard mathematical subroutines. For

a
validation of the code, a rectangular waveguide with _) = 2 and without wall distortion is

selected as a first example. The cut-off wave numbers calculated using the present code are given

in Table 1 along with the results reported earlier [7]. It is found that the percentage error in the

calculated wave numbers using the present code is very small (less than 3 percent). From the

results shown in Table 1, it is also observed that the percentage error increases with the mode

order.

Table 1: Cut-off wave number of rectangular waveguide a/b =2

kca
Modes

Reference [ 1] Present Method %Error

TE Modes

TElo 3.142 3.1397 0.007

TE2o 6.285 6.276 0.143

TEol 6.285 6.267 0.286

TEll 7.027 7.139 1.59

TE3o 9.428 9.376 0.552

TE21 8.889 9.115 2.54

TM Modes

TMll 7.027 7.026 0.001

TM21 8.889 8.9012 0.137

TM31 11.331 11.337 0.052

15



For thesecondexample,aninhomogenuosrectangularwaveguidewithout anywall

distortionasshownin Figure6 is considered. For this geometry,usingthe presentcode the

propagationconstantasafunction of frequencyis calculatedandgivenin Table2 alongwith

earlierpublisheddata. Thenumericalresultsobtainedby thepresentcodearewithin 5percentof

theanalyticalresults[7,9].

Table 2: Dispersion characteristic of lowest order in a rectangular waveguide

[3/k 0 For lowest order mode
b/)_

Reference [1 } Present Method % Error

0.2 0.48 0.462 3.75

0.3 1.00 1.01 1.00

0.4 1.18 1.18 0.00

0.5 1.26 1.28 1.59

0.6 1.30 1.36 4.62

3.2 Rectangular waveguide with wall distortion:

In an inflatable rectangular waveguide, distortion in the walls may be of type shown in

Figure 3. In this section, effect of each type of distortion on the propagation constant is

numerically studied. It should be noted that while analyzing the effects of distortion, the

perimeter of distorted waveguide remains the same as that of undistorted waveguide. This is due

to inelastic characteristics of the material used for the inflatable waveguide. In the present code,

under the constant perimeter constrain effect of each type of distortion, the propagation constant

is numerically studied.

3.2.1 Inclined walls in y-direction:

A rectangular waveguide with inclined walls in y-direction is shown in Figure 7. The

16



dispersioncharacteristics_51isfo,.fe,tof anL-bandrectangularwaveguidewith dimension

16.5x 8.26 cm and walls in the y-direction inclined at 0 are calculated using the present code.

If _Sn,tisfo,.fe,t is the dispersion characteristics of undistorted L band rectangular waveguide, the

percentage change in the dispersion characteristics of distorted waveguide is given by

_5_isf°"f_ - _5"n_isf°"f_ 100 (29)
percentage Change in I_ = _undistorted

The percentage change in the dispersion characteristics using (29) is then calculated and

presented in Figure 8 for various values of 0. From Figure 8 it may be concluded that there is not

a significant effect of the distortion shown in Figure 7 on the propagation characteristics. Figure 9

shows the electric field pattern in the cross section of the rectangular waveguide. The arrow

direction gives the direction of electric field and the length of arrows show the magnitude of the

electric field.

3.2.2 Inclined walls in x-direction:

A rectangular waveguide with inclined walls in the x-direction is shown in Figure 10. The

dispersion characteristics _distorted of an L-band rectangular waveguide with dimension

16.5 x 8.26 cm and walls in the x-direction inclined at 0 are calculated using the present code.

The percentage change in the dispersion characteristics using (29) is then calculated and pre-

sented in Figure 11 for various values of 0. Figure 12 shows the electric field pattern in the cross

section of the rectangular waveguide. The arrow direction gives the direction of electric field and

the length of arrows shows the magnitude of the electric field.

3.2.3 Rectangular waveguide with curved walls:

Rectangular waveguides with curved walls may take shapes as shown in Figures 13, 16,

19, 22, 25, and 28. These waveguide shapes are modelled using GEOSTAR, and the percentage

17



changein thedispersioncharacteristicscalculatedusingequation(29)is presentedin Figures14,

17,20,23,26,and29. Correspondingelectricfield plotsfor thesegeometriesareshownin

Figures15,18,21,24,27,and30. FromFigures14,17,and20 it maybeconcludedthat

distortionsof formsgivenin Figures16and19causemorechangesin propagationconstantthan

thedistortionshowninFigure13. Similarconclusionmaybedrawnfrom Figures23,26,and29.

Thedistortionof formsgivenin Figures25 and28causemorechangesin thepropagation

constantthanthedistortionshownin Figure23.

3.2.4Rectangularwaveguidewith randomly distorted walls:

A rectangular waveguide with distorted walls is shown in Figure 31. The randomly

distorted rectangular cross section shown in Figure 31 is obtained using the following procedure.

Random distortion in the walls is obtained by using a random number satisfying Gaussian

2
distribution with varience c_ = 0.2 and zero mean value. Using the tolerance of _+0.2 and

2
variance c_ = 0.2, random numbers satisfying the Gaussian distribution are generated. A

randomly distorted cross section of L-band rectangular waveguide as shown in Figure 31 is then

obtained by displacing the boundary nodes of undistorted L-band rectangular waveguide using

these random numbers. The percentage change in the dispersion characteristics using (29) is

2
then calculated for c_ = 0.2 for the tolerance of 0.2. In order to determine the true statistical

2
nature, 50 runs were performed for c_ = 0.2 and tolerance equal to 0.2 and the percentage

change in the dispersion characteristics for each case are presented in Figure 32. From these

results, mean and standard deviation values for the [_ are calculated and presented in Figure 33.

2
Figures 34 and 35 show results of similar run for c_ = 0.2 and the tolerance equal to _+0.1.
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4.0 Conclusion

Simple formulas are developed to show dependence of slot array performance on the

dominant mode propagation constant of the rectangular waveguide feeding the slot array. Using

the Finite Element Method it has been shown how various types of mechanical deformation can

alter the propagation constant and hence the array performance. The variety of deformation/

distortions that might be present in an inflatable rectangular waveguide are analyzed and their

effects on the dominant mode propagation constant are numerically studied. The study will help

in determining allowable dimensional tolerances in an inflatable rectangular waveguide to be

used in the space antennas.

Appendix A

A.1 Derivation of Nodal Basis Function:

Consider a triangle as shown in Figure 5 where ezl , ez2 , ez3

ponent of electric field at the three nodes reduplicative. Assuming linear variation

gle, E Z (x, y) can be written as

are the amplitudes of z-com-

over the trian-

E (x,y) = aa+bbx+ccy (30)

The constants aa, bb, cc can be determined from

[: il eli I]fa!] lXlylz
bb = x2 Y2 (31)

c x 3 y

Substituting (31) into (30)

where

and rearranging the terms, (30) can be written as

3

E (x,y) = ___eio_ i(x,y) (32)

i 1
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_i(x,Y)

1
_i (x, y) = _-_ (a i + bix + ciY ) with i = 1, 2, 3

a i = XjYk--Xky j

bi = Yj-Yk

c i = Xk--X j

1X 1 YlA 1 x 2 Y2

1 x 3 Y3

given in (33) is the required nodal basis function.

(33)

(34)

(35)

(36)

(37)

A.2 Derivation of Vector Edge Basis Function:

From the current basis functions given in [10]

between nodes 2 and 3 (see 5) can be written as

the vector edge function for the edge

---> LI^

W1 = _-_z× (._(x-x1) +Y(Y-Yl)) (38)

---)
The vector edge function defined in (38) satisfies the condition Vf • W1 = 0 ; and if 71 is the unit

vector along the #1 edge, then ?1 • W1 = 1 . The edge vector functions in general can be written

as

L.

Wi = 2A 2 x (2 (x-xi) + y (y -Yi) ) (39)

..__)
Wi given in (39) is the required vector edge basis function.

Appendix B

B.1 Expressions for Matrix Elements:

Using the basis function given in (33) and (39) and using expressions (21)-(28), the matrix

elements of matrix equations (19) and (20) can be written as

20



2

1 LmLm' ko8r
Sel(m',m) - f f((x-x,n)(x-x,n,)+(y-y,n)(y-ym,))dxdy (40)

_r A 4A 2 triangle ....

Re/(m,,m ) _ 1 f f ( (x-xm) (x-xm') + (Y-Ym) (Y-Ym') )dxdy (41)

Qe/(m', i) (42)

(43)

_r4A2triangle

- 4A 2 f f (ci(x-xm,)-bi(y-ym,) )dxdy
_t r triangle

" f f(ai+bix+ciy)(ai'+bi'x+ci'y))dxdy
Pel (1, i) = 1 (bi,bi + cici,) 4A2triang le

1 LmLm'

_tr A

1
Eel (i', i) - (bi, b i + cici, )

_tr4A

E

r 2 f f((x-x,n)(x-x,_,')+(Y-Y,n)(Y-Ym'))dxdy
4A triangle

Ye/(i''i) _ e,. f f(ai+bix+ciY)(ai,+bi,x+ci,Y))dxdy

4A2triangle

Ue/(m', m) (44)

(45)

Xe/(m', m) - (46)

(47)

Using 13 point integration formulas given in [ 11], the integration over triangle appearing in

(40)-(47) are evaluated.
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Figure 7 Geometry of L-band rectangular waveguide with inclined walls in y-direction.
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Figure9 Electricfield in thecrosssectionof distortedL-bandrectangularwaveguide
shownin Figure7.
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Figure 12 Electric field in the cross section of distorted L-band rectangular waveguide
shown in Figure 8 (frequency = 1.4 GHz).
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Figure 23 Plot of percentage change in dispersion characteristics of L-band rectangular

waveguide with distortion as shown in Figure 22.
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Figure 24 Electric field in the cross section of distorted L-band rectangular waveguide

shown in Figure 22 (frequency = 1.4 GHz).
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Figure 26 Plot of percentage change in dispersion characteristics of L-band rectangular
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Figure 27 Electric field in the cross section of distorted L-band rectangular waveguide

shown in Figure 25 (frequency = 1.4 GHz).
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Figure 28 Geometry of L-band rectangular waveguide with distortion in y-walls.
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